Chia-Pei Denise Hsu

(832) 231-0738

- Cpdhsu@gmail.com
- www.denisehsu.com

EDUCATION 🗢

Doctor of Philosophy in Biomedical Engineering Florida International University Miami, FL, USA Aug 2017 – Dec 2022

Master of Science in Mechanical Engineering Carnegie Mellon University Pittsburgh, PA, USA May 2008 - Dec 2008

Bachelor of Science in Mechanical Engineering & **Biomedical Engineering**

Carnegie Mellon University Pittsburgh, PA, USA Aug 2004 - May 2008

SKILLS 🎴

Laboratory: Cell isolation, cell culture, DNA/RNA extraction, gene/protein expression, histology, immunofluorescent staining Languages: English, Taiwanese, Mandarin Chinese, Spanish (conversant) Equipment: Autoclave, Bioflux, Vivitro, Bioreactor, Confocal microscope, Arduino, 3D printing, Cryostat, Lathe, Milling machine, Band saw, Drill press Software: MS Office,

SolidWorks (CSWP certified), Creo/ProE, ANSYS, MicroStation, AutoCad, SmartPlant P&ID, SPSS, MATLAB, R, Java, C++, HTML, quality/project management software

LEADERSHIPS 🛅

Tau Beta Pi, FLO Chapter Engineering Honor Society

- Advisor, 2021 Present
- President, 2018 2020

Alpha Eta Mu Beta

BME Honor Society

Treasurer, 2020

Event Planner, 2018 – 2020 Mechanical FE/EIT (2013), ASME (2005), BMES (2018), AHA (2020)

🖌 WORK AND RESEARCH EXPERIENCES 🚞

Sr. Product Development Engineer, Aug 2023 - Present

Noble / Aptar Pharma, Orlando, FL

- Designed self-administered medical device solutions for patients with chronic health conditions
- ٠ Generated prototypes and conducted design review meetings with clients to progress product development through design stages
- ٠ Established new supplier relations to diversify long-term partnerships, enhancing flexibility within company supply chain
- Wrote in-depth technical SOPs compliant with manufacturing standards, ensuring stringent regulatory adherence and quality control
- Drafted product design specifications and reviewed quality control plans (QCP) on SharePoint and EtQ quality management software
- Maintained design history files (DHF), developed and executed design verification test plans for various product platforms
- Collaborated with counterparts on the broader corporate engineering team across other continents within the firm

Postdoctoral Associate, Jan 2023 – Jun 2023

University of Pittsburgh, Pittsburgh, PA

Conducted research on microrobots, machine learning, and synthetic biology

Graduate Biomedical Engineering Research/Teaching Assistant

Florida International University, Miami, FL, Aug 2017 - Dec 2022

- Investigated effects of calcification due to fluid oscillatory shear stress on paracrine signaling between cardiovascular cell types conditioned in a microfluidic shear assay system and a bioreactor
- Optimized protocols to maintain multiple mammalian cell lines (VECs, VICs, VasECs, VasSMCs, HBMSCs) for experimentation and cryopreservation
- Performed gene and protein expressions on conditioned cells and tissues using RT-qPCR, ELISA, Western blot, histology, and immunostaining
- Designed and fabricated a bioreactor using SolidWorks and ANSYS CFD to facilitate 3D tissue culture under physiologically relevant flow environments
- Assessed hydrodynamic functions of heart valves with regenerative capacities using valvular cells seeded in bio-scaffolds conditioned in a bioreactor
- Collaborated cross-functionally on RNA sequencing cellular response studies, enhancing rigor in gene expression results
- Mentored five junior lab assistants in cell culture and experimentation, contributing to progression of multiple grants, publications, and conference presentations
- Class Teaching Assistant: Biomedical Engineering Transport (5 semesters), Cell and Tissue Engineering with Lab (3 semesters)
- Provided peer review feedback on journal publication submissions relevant to field of research

R&D Product Mechanical Engineer, Oct 2013 – Jul 2017

Pegatron Corporation / Starlink Electronics Corp, Taiwan

- Used ProE and AutoCad to model and simulate electronic connector parts
- Assisted manufacturing teams on designing automated assembly lines
- ٠ Prepared and enforced vendor material quality control: GD&T and material testing (parts from injection molding, stamping, threading, electroplating)
- Implemented ISO 9001 QMS and UL product quality standards
- ٠ Prepared FMEA and root cause and corrective action (8D) reports
- Maintained technical contracts and submitted royalty reports

Mechanical Engineer, Aug 2011 – Aug 2013

Bechtel Corporation / PECL / Nuclear Power Plant / Mining & Metals, Taiwan

- Used SmartPlant P&ID and MicroStation to design P&IDs and PFDs
- Applied numerical methods to determine equipment and pipeline sizes for air, water, cooling, and heat exchanger systems (eg. valves, motors, conduits)
- Drafted calculation sheets, technical specs, material requisition documents
- ٠ Performed on-site plant walk-downs, proposed alternative structural designs

Product Support Specialist / Auction Admin, Jun 2009 - Jun 2011

Ariba, Inc., Pittsburgh, PA

- Provided sourcing and procurement software functional support on site navigation and system troubleshooting
- Monitored online live auctions, managed buyer and supplier market integrity
- Collaborated with realm enablement and site integration teams
- Conducted weekly internal product training sessions

CONFERENCES / AWARDS / FELLOWSHIPS 🖃 9th World Congress of Biomechanics 2022, July 10-14, Taipei, Taiwan (Oral presentation) Abstract: "Valve Endothelial Cell Secretions Augment Calcification by Valve Interstitial Cells" 8th Heart Valve Society Annual Meeting 2022, March 3-5, Miami Beach, FL, USA (ePoster presentation) Abstract: "Bio-scaffold Versus Synthetic Scaffold Interactions with Seeded Stem Cells in Dynamic Flow Culture Environments" 7th Heart Valve Society Annual Meeting 2021, April 9, Miami Beach, FL, USA (Virtual conference, video presentation) Abstract: "Tricuspid versus Mitral Performance of Cylindrical Porcine Small Intestinal Submucosa Valves" 52nd Biomedical Engineering Society Annual Meeting 2020, October 14-17, San Diego, CA, USA (Virtual conference, video presentation) Abstract: "Calcific Media Combined with Media from Oscillatory Flow-Conditioned Valve Endothelial Cells Leads to Valve Interstitial Cell Calcification" **AEMB** Travel Award International Conference of Tissue-Engineered Heart Valves + 6th Heart Valve Society Annual Meeting 2020, February 14-16, Abu Dhabi, UAE (Oral presentation) Abstracts: "Hydrodynamic Assessment of a Small Intestinal Submucosa Tubular Aortic Valve" and "Hydrodynamic Assessment of a Small Intestinal Submucosa Tubular Mitral Valve" 51st Biomedical Engineering Society Annual Meeting 2019, October 16-19, Philadelphia, PA, USA (Poster presentation) Abstract: "Vascular Smooth Muscle Cell Alpha-Smooth Muscle Actin Expression after Exposure to Conditioned Media from Endothelial Cells Cultured in Oscillatory Flow Environments" **AEMB** Travel Award 5th Summer Biomechanics, Bioengineering, and Bio-transport Conference 2019, June 25-28, Seven Springs, PA, USA (Poster presentation) Abstract: "The Effects of Oscillatory Shear Regulation on Paracrine Signaling between Vascular Endothelial Cells and Vascular Smooth Muscle Cells" 50th Biomedical Engineering Society Annual Meeting 2018, October 17-20, Atlanta, GA, USA (Poster presentation) Abstract: "Assembly of a Pulsatile Flow Bioreactor System to Facilitate Oscillatory-flow Conditions to

Graduate Research Day 2022, March 9, FIU

Optimize In Vitro Engineered Valve Tissue Growth"

Abstract: "Valve Endothelial Cells Exposure to High Oscillatory Flow Leads to Valve Interstitial Cell Calcification"

Oral Presentation 1st Prize Award

Graduate Research Day 2021, March 12, FIU

Abstract: "Tricuspid versus Mitral Performance of Cylindrical Porcine Small Intestinal Submucosa Valves" Poster Presentation 2nd Prize Award

Graduate Research Day 2020, March 6, FIU

Abstract: "Hydrodynamic Assessment of Small Intestinal Submucosa Tubular Valves"

Poster Presentation 2nd Prize Award

Biomedical Research Initiative (BRI) 2018, FIU

Project Title: "Optimal Engineering of Heart Valve Tissues Using Human Bone Marrow Stem Cells" Summer Research Award funded by NIGMS RISE

Dissertation Year Fellowship (DYF), FIU

Spring – Summer 2022

PUBLICATIONS

Mirza A, **Hsu CPD**, Rodriguez A, Alvarez P, Lou L, Sey M, Agarwal A, Ramaswamy S, Hutcheson JD. Computational Model for Early-Stage Aortic Valve Calcification Shows Hemodynamic Biomarkers. *Bioengineering*. 2024; *11*(10): 955. DOI: https://doi.org/10.3390/bioengineering11100955

Gonzalez BA, Herrera A, Ponce C, Gonzalez Perez M, **Hsu CPD**, Mirza A, Perez M, Ramaswamy S. Stem Cell-Secreted Allogeneic Elastin-Rich Matrix with Subsequent Decellularization for the Treatment of Critical Valve Diseases in the Young. *Bioengineering*. 2022; *9*(10): 587. DOI: https://doi.org/10.3390/bioengineering9100587

Hsu CPD, Tchir A, Mirza A, Chaparro D, Herrera RE, Hutcheson JD, Ramaswamy, S. Valve Endothelial Cell Exposure to High Levels of Flow Oscillations Exacerbates Valve Interstitial Cell Calcification. *Bioengineering*. 2022; *9*(8): 393. DOI: https://doi.org/10.3390/bioengineering9080393

Gonzalez BA, Perez-Nevarez M, Mirza A, Perez MG, Lin YM, **Hsu CPD**, et al., Ramaswamy, S. Physiologically Relevant Fluid-Induced Oscillatory Shear Stress Stimulation of Mesenchymal Stem Cells Enhances the Engineered Valve Matrix Phenotype. *Frontiers in Cardiovascular Medicine*. 2020; 7. DOI: https://doi.org/10.3389/fcvm.2020.00069

Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory Fluid-Induced Mechanobiology in Heart Valves with Parallels to the Vasculature, *Vascular Biology*. 2020; *2*(1), R59-R71. DOI: <u>https://doi.org/10.1530/VB-19-</u>0031

Ruder WC, **Hsu CPD**, Edelman BD, Schwartz R, Leduc PR. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid. *Applied Physics Letters*. 2012; *101*(6), 063701. DOI: <u>https://doi.org/10.1063/1.4742329</u>

Ruder WC, **Hsu CP**, Chou SY, Dawson JT, Gonzalez LM, Antaki JF, Leduc PR. Micropatterning Biomanufactured Single-Domain Nanoparticles using Self-Assembly to form Artificial Magnetosome Chains. *Biophysical Journal*. 2010; *98*(3). DOI: <u>https://doi.org/10.1016/j.bpj.2009.12.4001</u>